

Seminarunterlage

Optimale Beleuchtung und Hygiene im Schafstall

Cafe Zillertal, Strass im Zillertal 25.11.2016, 14:00 Uhr

Trainer/in: DI Daniel Werner

Franz Wimmer

Unterlage erstellt von: Alexander Siess, BEd November 2016

www.lfi.at

Ihr Wissen wächst

Optimale Beleuchtung im Schafstall

Daniel Werner, Dipl.-Ing. (FH)

M. Sc. Maike Müller, Bayerische Landesanstalt für Landwirtschaft Prof. Dr. Eva Schwenzfeier-Hellkamp, Fachhochschule Bielefeld Prof. Dr. Klaus Reiter, Bayerische Landesanstalt für Landwirtschaft

Optimale Beleuchtung und Hygiene im Schafstall Innsbruck, 25.11.2016

Daniel Werner, Dipl.-Ing. (FH)

- Wiss. Mitarbeiter im Labor für Intelligente Licht- und Energiesysteme
- Wiss. Mitarbeiter im Forschungsprojekt I_LED_Milchvieh (Intelligente LED-Leuchte für die Funktionsbereiche "Fressen", "Liegen" und "Laufen" in der Milchviehhaltung)
- Angestrebte Promotion im Bereich "LED-Beleuchtung in der landwirtschaftlichen Milchviehhaltung"

Inhalt

- · Forschungsprojekt I_LED_Milchvieh
- · Effizienz durch gute Beleuchtung
- · Sehvermögen Mensch und Tier
- Aufbau und Funktionsweise verschiedener Leuchtmittel
- · Gefahrenpotenzial Retrofit
- · Praxisbeispiele
 - · Unterschiedliche Beleuchtungsintensitäten
 - Unterschiedliche Leuchttypen
 - · Unterschiedliche Leuchtoptiken
- Fazit

3

Optimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Marke Müller, Eva Schwenzfeler-Hellkamp, Klaus Reiter

Forschungsprojekt I_LED_Milchvieh

- Entwicklung einer Intelligenten LED-Leuchte für die Funktionsbereiche "Fressen", "Liegen" und "Laufen" in der Milchviehhaltung
- · Laufzeit 3 Jahre endet am 31.07.17

[eigene Aufnahme]

Die Förderung erfolgte aus Mitteln des Zweckvermögens des Bundes bei der Landwirtschaftlichen Rentenbank

4

Optimale Beleuchtung im Schafstall- Innsbruck, 25.11.2016 Daniel Werner, Marke Müller, Eva Schwenzfeser-Heilkamp, Klaus Reter

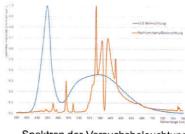
Forschungsprojekt I_LED_Milchvieh

Praxistest

 Untersuchung des Einflusses von Licht unterschiedlichen Spektrums auf das Verhalten der Tiere

Beleuchtungskonzept

1. Phase: Natriumdampfbeleuchtung


2. Phase: LED-Beleuchtung

3. Phase: Natriumdampfbeleuchtung

· Jeweils 6 Wochen pro Phase

 150 lx mittlere Beleuchtungsstärke mit möglichst hoher Gleichmäßigkeit

• 16 Std. Beleuchtung (6 - 22 Uhr)

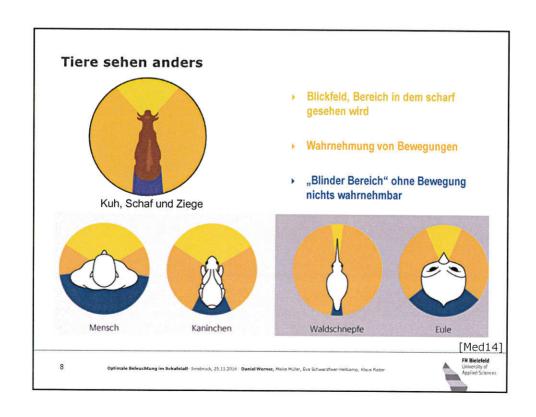
Spektren der Versuchsbeleuchtung

[eigene Aufnahme

5

ptimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Marke Muller, Eva Schwenzfeler-Hellkamp, Klaus Reiter

Effizienz durch gute Beleuchtung


- \bullet Energiebedarf der Beleuchtung liegt im landwirtschaftlichen Bereich oftmals deutlich unter 10 % des Gesamtenergiebedarfs
 - ightarrow Lohnt sich dann ausgerechnet hier eine energetische Sanierung?
- Klassische Amortisationsbetrachtungen zeigen aber nur die halbe Wahrheit
 - ightarrow Betrachtungen zur Lichtwirkung und -wahrnehmung fehlen
- Licht in der richtigen Qualität und Quantität ist unerlässlich für Mensch und Tier
 - Es wird zum Sehen und zur Steuerung des biologischen Rhythmus benötigt
 - Beeinflusst das Verhalten, Wohlbefinden und die Gesundheit

3

Optimale Beleuchtung im Schafstall · Innsbruck, 25.11.2016 · Daniel Werner, Malke Muller, Eva Schwenzfeier-Heilkamp, Klaus Rete

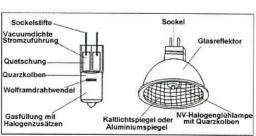
Vergleichsaspekt	Mensch	Schaf / Ziege
Farbsehvermögen	Trichromat	Dichromat
Max. Sensitivitäten der Zapfen	S-Zapfen: 430 nm M-Zapfen: 535 nm L-Zapfen: 565 nm	Schaf: S-Zapfen: 445 nm M/L-Zapfen: 552 nm Ziege: S-Zapfen: 443 nm M/L-Zapfen: 552 nm
Sehbereich	180° - 200° gesamt 120° binokular	300° gesamt 60° binokular
Fri14], [Jac97], [Lau44], [Pei97]		

Inhalt

- · Forschungsprojekt I_LED_Milchvieh
- · Effizienz durch gute Beleuchtung
- Sehvermögen Mensch und Tier
- Aufbau und Funktionsweise verschiedener Leuchtmittel
- · Gefahrenpotenzial Retrofit
- Praxisbeispiele
 - Unterschiedliche Beleuchtungsintensitäten
 - · Unterschiedliche Leuchttypen
 - · Unterschiedliche Leuchtoptiken
- Fazit

9

Optimale Beleuchtung im Schafstall - Innsbruck, 25:11:2016 Daniel Werner, Marke Müller, Eva Schwenzfeier-Hellkamp, Klaus Reiter


Aufbau und Funktionsweise thermischer Strahlungsquellen

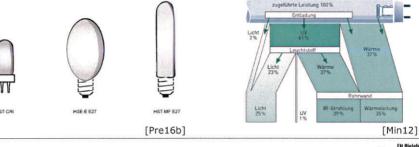
- · Glüh-, Halogen- oder Xenonlampen
- Geringe Lebensdauer (laut Herstellerangaben ca. 1.000 Std. f

 ür Gl

 ühlampen)
- Schlechter Wirkungsgrad (nur ca. 5~% der elektrischen Leistung wird in Licht umgewandelt)
- Sehr gute Farbwiedergabe (Ra Wert nahe 100)

[Itw16]

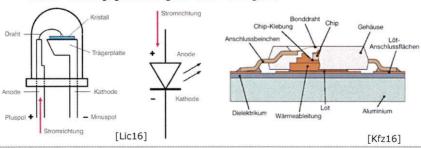
[Bas16]


10

Optimale Beleuchtung im Schafstall - Innsbruck, 25.11.2018 - Daniel Werner, Malke Müller, Eva Schwanzfaer-Hellkamp, Klaus Reite

Aufbau und Funktionsweise von Nieder- und Hochdruckentladungslampen

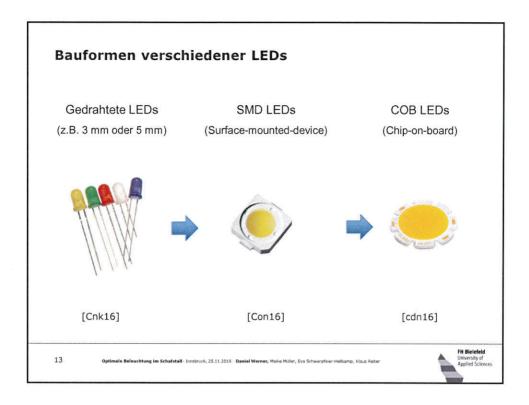
- "Energiespar-" und Leuchtstofflampen sowie Lampen auf Natrium-, Quecksilberund Metallhalogendampfbasis
- Mittlere und lange Werte für die Lebensdauer (30.000 Std. 35.000 Std.)
- Mittlerer Wirkungsgrad (ca. 25 % der elektrischen Leistung wird bei Leuchtstofflampen in Licht umgewandelt)
- Sehr schlechte (Natriumdampf) bis gute (Metallhalogendampf) Farbwiedergabe

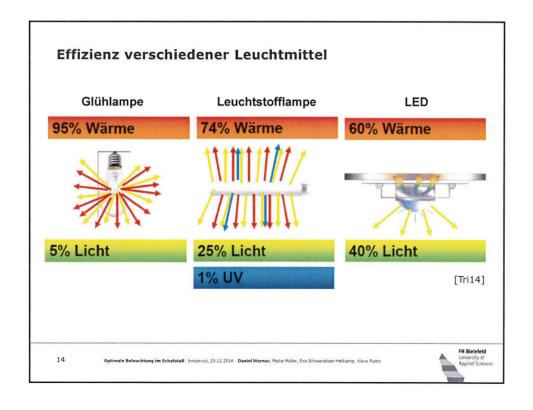


Optimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 Daniel Werner, Maike Müller, Eva Schwenzfeit

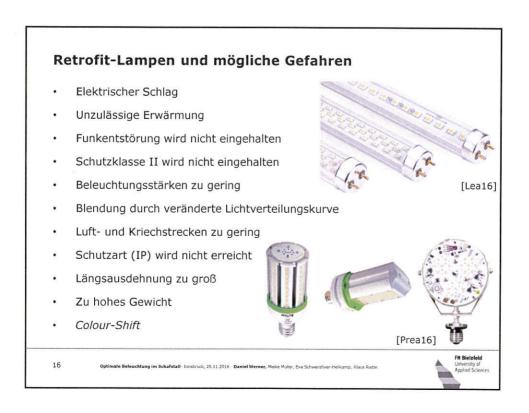
Aufbau und Funktionsweise einer LED

- engl.: light-emitting diode dt.: Licht-emittierende Diode
- Halbleiterbauelement, das nach dem Wirkungsprinzip der Elektrolumineszenz elektromagnetische Strahlung in Form von Licht emittiert
- Lange Lebensdauer
- · Hoher Wirkungsgrad und gute Farbwiedergabe




12

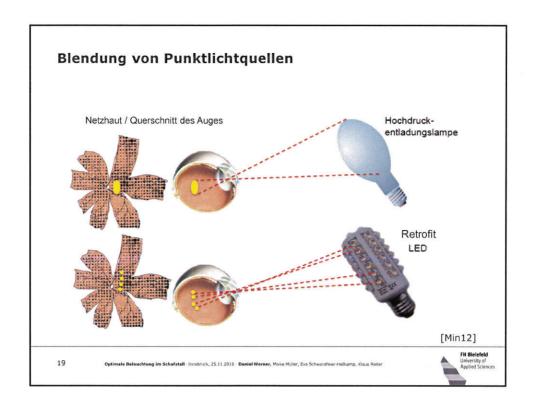
11

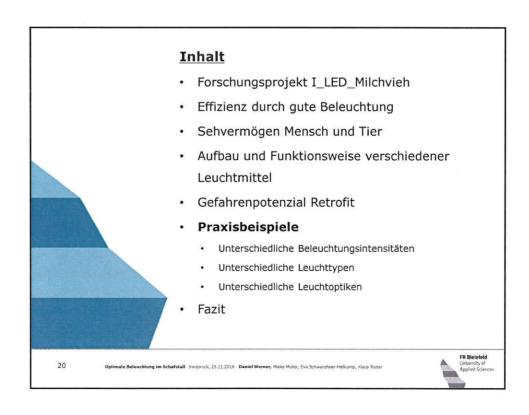

Optimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Malke Müller, Eva Schwenzfeier-Heilkamp, Klaus Re

Thermische Überhitzung von Retrofit-Lampen

Thermische Überhitzung durch erhöhte Schmutzbelastung [Fas16a]

Thermische Überhitzung eines LED-Spots [Fas16a]

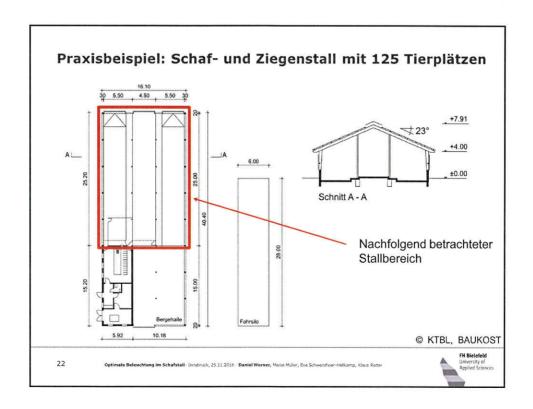

ung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Marke Müller, Eva Schwenzfeier-Hellkamp, Klaus Reite

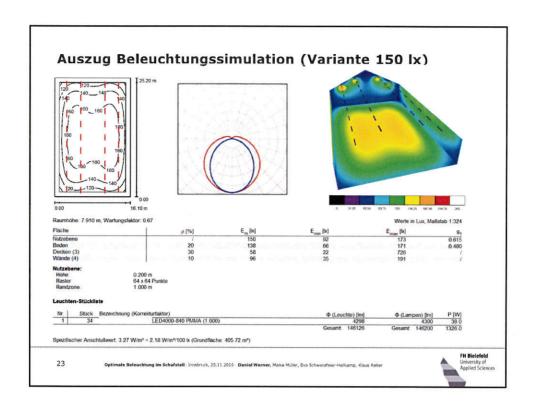


Colour-Shift im Randbereich von schlecht verarbeiteten **LED-Leuchten**

le Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Maike Müller, Eva Schwenzfeer-Hellkamp, Klaus Reter

Praxisbeispiel mit unterschiedliche Beleuchtungsintensitäten


Schaf- und Ziegenstall mit 125 Tierplätzen


- Musterstall des KTBL (Kuratorium für Bauwesen in der Landwirtschaft)
- · Tiefstreustall mit 62 Tieren je Gruppe
- Tier-/Fressplatzverhältnis 1:1
- Beleuchtungssimulationen mit LED-Langfeldleuchten auf die Zielgrößen 100 lx, 150 lx und 200 lx mittlere Beleuchtungsstärke
- · Möglichst gleichmäßige Beleuchtung
- Montageart: Anbau (keine Abpendelung) mit 2 bzw. 4 "Lichtbändern"
- Wartungsfaktor: 0,67
- Reflektionen: 30 % Decke, 10 % Wände und 20 % Boden

21

Optimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Marke Müller, Eva Schwanzfeier-Hellkamp, Klaus Reiter

Ergebnisse (LED-Langfeldleuchten)

	100 lx	150 lx	200 ix
Anzahl Leuchten	24	34	46
Installierte Leistung [W]	936	1.326	1.794
Installierte Leistung pro Fläche [W/m²]	2,31	3,27	4,42
Gleichmäßigkeit g1	0,60	0,62	0,63

→ Doppelte Beleuchtungsstärke bedeutet nicht gleich die doppelte Anzahl an zu installierenden Leuchten sowie die doppelt installierte Leistung

24

pptimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Maike Müller, Eva Schwenzfeier-Hellkamp, Klaus Rati

Praxisbeispiel mit unterschiedlichen Leuchten

Schaf- und Ziegenstall mit 125 Tierplätzen

- · Beleuchtungssimulationen mit:
 - LED-Langfeldleuchte 39 W (LED Langfeldleuchte)
 - LED-Flächenstrahler 118 W (LED Flächenstrahler)
 - Klassische Leuchtstofflampe 2 x 58 W (Leuchtstofflampe)
 - Metallhochdruckdampfleuchte 250 W (Metalldampf 250)
 - Metallhochdruckdampfleuchte 400 W (Metalldampf 400)
- · Mittlere Beleuchtungsstärke auf die Zielgrößen 150 lx
- · Möglichst gleichmäßige Beleuchtung
- · Montageart: Anbau (keine Abpendelung) mit 2 bzw. 4 "Lichtbändern"
- · Wartungsfaktor: 0,67
- · Reflektionen: 30 % Decke, 10 % Wände und 20 % Boden

25

ptimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Maike Müller, Eva Schwenzfeier-Heilkamp, Klaus Reiter

Ergebnisse

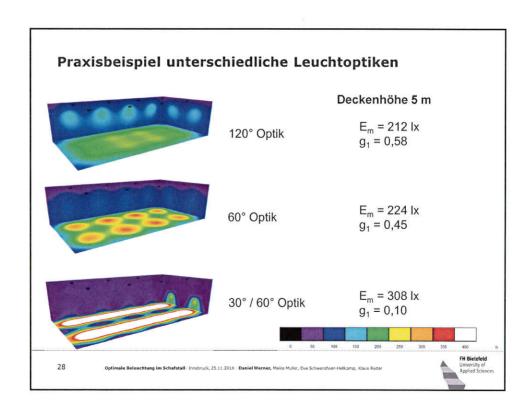
	LED Langfeld- leuchte	LED Flächen- strahler	Leucht- stoff- lampe	Metall- dampf 250	Metall- dampf 400
Anzahl Leuchten	34	8	22	13	4
Installierte Leistung [W]	1.326	947	2.420	3.250	1.600
Installierte Leistung pro Fläche [W/m²]	3,27	2,33	5,96	8,01	3,94
Gleichmäßigkeit g1	0,62	0,54	0,47	0,53	0,44

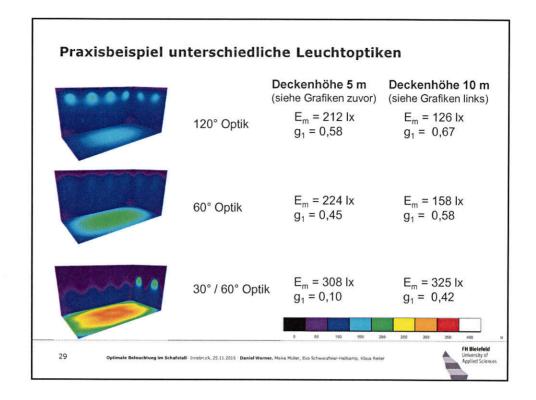
- → LED-Langfeldleuchte erreicht höchste Gleichmäßigkeit, Aufwand bei den zu installierenden Leuchten sehr groß
- → Leuchtstofflampe vermutlich in der Anschaffung am günstigsten, Energiebedarf aber mehr als das 2,5-fache im Vergleich zum LED-Flächenstrahler

26

Optimale Beleuchtung im Schafstall- Innsbruck, 25.11.2016 - Daniel Werner, Marke Muller, Eva Schwenzfeier-Hellkamp, Klaus Reiter

Praxisbeispiel mit unterschiedlichen Optiken für Leuchten


Musterraum


- · Raumabmaße gleichbleibend
- · Simulation verschiedener Optiken
 - 120
 - 60°
 - 30° / 60°
- Betrachtung der mittleren Beleuchtungsstärke E_m sowie der Gleichmäßigkeit g₁ (mittlere zu minimaler Beleuchtungsstärke)

27

ptimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Marke Muller, Eva Schwenzfeler-Hellkamp, Klaus Reiter

Fazit

- · Beleuchtung für Mensch und Tier
- Hohes Gefahrenpotenzial bei Verwendung von Retrofit-Produkten
- Beleuchtungssimulation für eine gute, gleichmäßige und energieeffiziente Beleuchtungssituation zwingend erforderlich
- → Nicht jede Leuchte ist für jeden Stall geeignet
- → Hersteller bzw. Vertrieb sollte eine individuelle und kostenlose Beleuchtungssimulation anbieten

3

Optimale Beleuchtung im Schafstall - Innsbruck, 25.11.2016 - Daniel Werner, Maike Muller, Eva Schwenzfeier-Heilkamp, Klaus Reitz

Vielen Dank für Ihre Aufmerksamkeit!

Bei weiteren Fragen können Sie uns wie folgt erreichen:

Daniel Werner, Dipl.-Ing. (FH) daniel.werner@fh-bielefeld.de +49.521-106 7385

Ouellen

	32	Optimale Beleuchtung im Schafstall- Innsbruck, 25.11.2016 Daniel Werner, Make Müller, Eva Schwenzfeer-Heiklamp, Klaus Reter Applied Sciences
_	[Tri14]	LED Basiswissen; Trilux Akademie; 2014
	[Pre16b]	http://prediger.de/assets/images/natriumdampflampen.gif; letzter Zugriff 11.2013
	[Pre16a]	http://www.premieritg.com/wp-content/uploads/2013/12/hid-to-led-retrofit-bulbs.png, letzter Zugriff 09.11.16
	[Pei97]	Peichl L.: Die Augen der Säugetiere: Unterschiedliche Blicke in die Welt, Biologie in unserer Zeit, 27. Jahrgang, VCH Verlagsgesellschaft mbH, Weinheim, 1997
	[Msc13]	Michael Schneider; Fachhochschule Bielefeld; 2013
	[Min12]	Jörg Minnerup; LED - Straßenbeleuchtung im Kontext zur EN 13201 und weiteren Normen; ETP Kongress 2012; Tagungsort Leipzig; 2012
	[Lic16]	https://lichtforum.files.wordpress.com/2013/02/led-aufbau1.jpg, letzter Zugriff 09.11.16
	[Lea16]	http://www.leapfroglighting.com/wp-content/uploads/2013/05/LED_T8_tubes.jpg, letzter Zugriff 09.11.16
	[Kfz16]	http://www.kfztech.de/kfztechnik/elo/licht/led/LED_Aufbau_Dragon.jpg, letzter Zugriff 09.11.16
	[Jac97]	Jacobs G. H., Deegan II J. F., Neitz J.: Photopigment basis for dichromatic color vision in cows, goats, and sheep, Visual Neuroscience 1998 - 15, Cambridge University Press, 1998
	[Itw16]	http://www.itwissen.info/bilder/aufbau-einer-gluehlampe.png; letzter Zugriff 14.11.2016
	[Fri14]	Frings S., Müller M.: Biologie der Sinne - Vom Molekül zur Wahrnehmung, Springer-Verlag Berlin Heidelberg, 2014
	[Fas16b]	http://fastvoice.net/wp-content/uploads/2013/03/spot-einzelteile1.jpg, letzter Zugriff 09.11.16
	[Fas16a]	http://fastvoice.net/wp-content/uploads/2012/08/led-schmutz-on.jpg, letzter Zugriff 09.11.16
	[Con16]	https://img.conrad.de/medias/global/ce/1000_1999/1800/1810/1815/181582_BB_00_FB.EPS_ 1000.jpg, letzter Zugriff 09.11.16
	[Cnk16]	http://www.cnkls.com/admin/product_upload/20121206145310Standard%20LED.jpg, letzter Zugriff 09.11.16
	[Cdn16]	http://cdn.pollin.de/article/xtrabig/X120806.1.JPG, letzter Zugriff 09.11.16
	[Bas16]	http://basics-de.de/Lexikon/GluehlampenBatterien/GluehlampenNiedervoltHalogen/Halogenlampe Aufbau2Gross.jpg; letzter Zugriff 14.11.2016
	Quen	CII